
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4327  | https://doi.org/10.1038/s41598-021-83697-w

www.nature.com/scientificreports

Modeling COVID‑19 epidemics 
in an Excel spreadsheet to enable 
first‑hand accurate predictions 
of the pandemic evolution in urban 
areas
Mario Moisés Alvarez1,2*, Everardo González‑González1,2 & Grissel Trujillo‑de Santiago1,3

COVID‑19, the first pandemic of this decade and the second in less than 15 years, has harshly taught 
us that viral diseases do not recognize boundaries; however, they truly do discriminate between 
aggressive and mediocre containment responses. We present a simple epidemiological model that is 
amenable to implementation in Excel spreadsheets and sufficiently accurate to reproduce observed 
data on the evolution of the COVID‑19 pandemics in different regions [i.e., New York City (NYC), 
South Korea, Mexico City]. We show that the model can be adapted to closely follow the evolution 
of COVID‑19 in any large city by simply adjusting parameters related to demographic conditions 
and aggressiveness of the response from a society/government to epidemics. Moreover, we show 
that this simple epidemiological simulator can be used to assess the efficacy of the response of a 
government/society to an outbreak. The simplicity and accuracy of this model will greatly contribute 
to democratizing the availability of knowledge in societies regarding the extent of an epidemic event 
and the efficacy of a governmental response.

A SARS-CoV-2 (COVID-19) pandemic was declared by the World Health Organization in March 2020. More 
than 60,000,000 positive cases of COVID-19 infection had been declared worldwide at that point, mainly in 
China, Italy, Iran, Spain, and other European countries. By the end of 2020, one year after its emergence, the 
official cumulative number of infected worldwide ascended to more than 80 million with a toll of death higher 
than 1.75 million and a strong presence in Las Americas, mainly in the  USA1, Europe, and  India2. The socio-
economic effects of COVID-19 have been and will be also  remarkable3,4, and have to be yet fully quantified. 
COVID-19, the first pandemic of this decade and the second in less than 15 years, has harshly taught us that 
viral diseases do not recognize boundaries; however, they truly do discriminate between aggressive and mediocre 
containment responses.

Indeed, we have been able to observe exemplary responses from some Asian countries (i.e.,  China5, South 
 Korea6, and  Singapore7), some highly aggressive responses in Europe (i.e., Germany and  Switzerland8), and 
several delayed or not so effective responses from other regions (i.e., USA, England, Italy and Spain)9,10. At this 
point, some territories in Latin America (i.e., México) are just experiencing a second “exponential phase” of 
the COVID-19 pandemic at home and do not appear having yet implemented proper containment measures 
as rapidly as needed.

The gap between developed and developing countries may explain some of the differences in the scale of the 
responses that we are  observing3. Countries that are better equipped than others in terms of high-end scientific 
development, diagnostics technology, and health care infrastructure may respond more efficaciously to a pan-
demic scenario. However, other tools, such as mathematical modeling, are much more widely available and may 
be of extraordinary value when managing epidemic events such as the COVID-19 pandemics. To date, many 
papers have reported the use of mathematical models and simulators to evaluate the progression of COVID-19 
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in local or more global  settings11–14. Predictions on the possible evolution of COVID-19 based on mathematical 
modeling could therefore represent important tools for designing and/or evaluating  countermeasures13,15–17.

Historically, the use of models based on the definition of distinct and interacting compartments of suscepti-
ble, infected, and recovered individuals (SIR models) has been the preferred modeling  strategy18. Variations of 
the original SIR model have been adapted to include other subpopulations, such as  asymptomatic2 and exposed 
 individuals19. These adapted models (i.e., SEIR models) have been remarkably useful for describing epidemic 
events and have contributed enormously to our understanding of epidemic  progression19, COVID-19  included20. 
However, SIR-related models exhibit some limitations in the context of COVID-19  modelling21. For example, 
the progression of COVID-19 is eminently influenced by demographic  factors3,10, whereas SIR-related models 
are not intrinsically demographic-based. In addition, SIR-related models do not explicitly account for the active 
infective role of asymptomatic individuals. This may lead to relevant inaccuracies, for example missing the 
occurrence of the epidemic plateau that has been frequently observed during COVID-19 progression in differ-
ent regional  settings21.

Mathematical modeling may (and probably should) become a much more available tool in the case of public 
health emergencies—one ideally widely available to practically any citizen in any of our societies. One decade 
ago, during the influenza pandemics, mathematical modeling of epidemic events was the realm of privileged 
epidemiologists who had (a) a fast computer, (b) programing experience, and (c) and access to epidemiological 
data. Today, these three ingredients are reduced to a convectional laptop, very basic differential equation-solving 
skills, and access to a website with reliable online statistical information on epidemics. The availability of a simple 
model may be highly enabling for local governments, physicians, civil organizations, and citizens as they struggle 
in their endeavor to accurately forecast the progression of an epidemic and formulate a plan of action. Friendly 
and widely available mathematical modeling will enable rational planning (i.e., prediction of hospital bed occu-
pancy, design of testing campaigns, and reinforcement/redirection of social distancing strategies). Moreover, the 
use of simple/user-friendly models to evaluate in (practically) real time the effectiveness of containment strate-
gies or programs may be a powerful tool for analyzing and facing epidemic  events11,17. In addition, monitoring 
actual data, while comparing them with model predictions, enables real-time assessment of the effectiveness 
of the containment measures. In turn, this empowers officials, scientists, health care providers, and citizens.

The main purpose of this contribution is to demonstrate that a simple mathematical model, amenable to 
implementation in an Excel spreadsheet, can accurately predict the evolution of an epidemic event at a local level 
(i.e., in any major urban area). This model may be extremely valuable for government officials who must predict, 
with high fidelity, the progression of an epidemic event to better design their action strategies. Moreover, the 
democratization of the modeling of complex epidemic events will empower citizens, enabling them to forecast, 
decide, and evaluate. For instance, using this simple model, virtually any citizen could assess, in real time, the 
efficacy of the actions of her/his society in the face of an outbreak.

Rationale of the model formulation
Here, we construct a very simple epidemiological model for the propagation of COVID-19 in urban areas.

The model is based on a set of differential equations and considers two variable populations of individuals: 
infected (X) and retrieved (R) (Fig. 1). The cumulative number of infected patients (X) is the total number of 
subjects among the population that have been infected by SARS-CoV-2. The number of retrieved patients should 
be interpreted as the number of individuals that have been retrieved from the general population and are not 
contributing to the propagation of COVID-19. Retrieved subjects include subjects who have recovered from the 
infection and do not shed virus, quarantined individuals, and deceased patients. Importantly, the model assumes 
that infection results in (at least) short-term immunity upon recovery. This assumption is based on experimental 
evidence suggesting that rhesus macaques that recovered from SARS-CoV-2 infection could not be  reinfected22. 
However, the acquisition of full immunity to reinfection has not been confirmed in humans, although it is well 
documented for other coronavirus infections, such as SARS and  MERS23,24.

Two sets of parameters, demographic and clinical/epidemiological, determine the interplay between these 
two main populations and other subpopulations that include asymptomatic infected (A), symptomatic infected 
(S), and deceased (D) individuals. Clinical parameters include an intrinsic infection rate constant (µo) that is 
calculated from the initial stage of the pandemic in that particular region; the fraction of asymptomatic patients 
(a); the delay between the period of viral shedding by an infected patient (delay_r), the period from the onset of 
shedding to the result of first diagnosis and quarantine in the fraction of patients effectively diagnosed (delay_q); 
and the fraction of infected patients effectively diagnosed and retrieved from the population (α). Demographic 
parameters include the population of the region  (Po), the extent of social distancing (σ), and the fraction of 
infected individuals retrieved from the population due to massive and effective testing (α) (Fig. 1). The model is 
based on a set of two simple differential equations.

The first equation of the set (Eq. 1) states that the rate of accumulation of infected habitants (symptomatic 
and asymptomatic) in an urban area (assumed to be a closed system) is proportional to the number of infective 
subjects (X − R) present in that population at a given point and the fraction of the population susceptible to 
infection ((Po − X)/Po). Note that the number of infective subjects is given by the difference between the accu-
mulated number of infected subjects (X) and the number of retrieved subjects (R). The fraction of the susceptible 

(1)dX/dt = µo(1− σ) (X − R) (Po − X)/Po,

(2)dR/dt = α
t=t−delay_q

∫
t=0

dX/dt+ (1− α)
t=t−delay_r

∫
t=0

dX/dt.
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population decreases over time as more inhabitants in the community get infected. The proportionality constant 
in Eq. (1) (µo) is an intrinsic rate of infection that is weighted by the effective fractional reduction of social dis-
tancing on the population density (1 − σ).

The second equation (Eq. 2) describes the rate at which infected patients are retrieved from the infective 
population. Eventually, all infected subjects are retrieved from the population of infected individuals, but this 
occurs at distinct rates. A fraction of infected individuals (α) is effectively retrieved from the general population 
soon after the onset of symptoms or after a positive diagnosis. Another fraction of infected subjects (1 − α) is 
not effectively retrieved from the population until they have recovered or died from the disease. Therefore, in 
our formulation, the overall rate of retrieval (dR/dt) has two distinct contributions, each one associated with 
different terms on the right-hand side of Eq. (2). The first term accounts for the active rate of retrieving infected 
patients through the diagnosis and quarantine of subjects testing positive for SARS-CoV-2 infection. For this 
term, the delay from the onset of virus shedding to positive diagnosis and quarantine (delay_q) is considered 
short (i.e., about 2 or 5 days), to account for a reasonable time between the positive diagnosis and the action of 
quarantine. In our model formulation, this term is multiplied by α, the fraction of subjects successfully quaran-
tined after positive diagnostic. A second term relates to the recovery or death of infected patients (symptomatic 
or asymptomatic) and is represented by the integral of all infected subjects recovered or deceased from the onset 
of the epidemic episode in the region, considering a delay of 21 days (delay_r), which accounts for the average 
time of recovery of an infected individual. Note that the simultaneous solution of Eqs. (1) and (2) is sufficient to 
describe the evolution of the number of asymptomatic individuals (A), symptomatic individuals (S), and deceased 
patients (D) through the specification of several constants and simple relations.

Here, a is the fraction of asymptomatic subjects among the infected population, (1 − a) is the fraction of 
infected individuals that exhibit symptoms, and m is the mortality rate expressed as a fraction of symptomatic 
individuals.

(3)a dX/dt = dA/dt,

(4)(1− a) dX/dt = dS/dt,

(5)m [(1− a) dX/dt ] = dD/dt.

Figure 1.  Model formulation. (A) Schematic representation of the model. This novel multi-compartment 
demographic model formulation considers that new infections are proportional to (X–R; infected-retrieved). 
Demographic elements are directly integrated into the model  (Po, total population). The positioning and size of 
different bars indicates relationships between components. For instance, as the cumulative infected population 
progresses, the susceptible population  (Po–X; total population minus infected individuals) is reduced. The 
social distancing (σ) and the testing effort (α) are explicitly stated as the two main parameters that modify the 
epidemic progression.
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Please note that in this demographic model (Eqs. 1 and 2; Table 1; Fig. 1), the rate of new infections is cor-
rected by two factors that together define an effective demographic density of the region: (1 − σ)  (Po − X)/Po. Here 
(1 − σ) is the current level of activity in the region due to the implementation of social distancing measures (σ). 
In addition, the factor  (Po − X)/Po updates the susceptible population each time step by removing the infected 
population from the total population.

The formulation of Eqs. (1) and (2), enables stepwise numerical integration, for example by the Euler method. 
We have implemented this solution in an Excel spreadsheet (Supplemental File F1). To that aim, differential 
Eqs. (1) and (2) should be converted into their corresponding equations of differences:

For all the simulation results presented here, we set Δt = 1 h = 1/24 day. We have solved this differential set, 
step by step, updating the values of asymptomatic individuals (A), symptomatic individuals (S), and deceased 
patients (D), and susceptible population  (Po − X) according to Eqs. (3) to (5) (Supplemental File S1).

Rationale of the election of relevant epidemiological parameters
In the current version of our model, asymptomatic patients are considered part of the population capable of 
transmitting COVID-19; reported evidence that suggests that asymptomatic subjects (or minimally symptomatic 
patients) may exhibit similar viral  loads25 to those of symptomatic patients and may be active transmitters of the 
 disease5,26,27. We define the parameter a = 0.85, where a is the fraction of asymptomatic within the population. 
Therefore, (1 − a) is the fraction of the population that exhibit symptoms. Our selection of a = 0.85 is based on 
a recent large-scale serological study conducted in New York City (NYC) to find anti-SARS-CoV-2 antibod-
ies among the population and a computational  model27. This serological result, which is based exclusively on 
information from NYC, suggests that ~ 85% of exposed New Yorkers were asymptomatic or exhibited minor 
symptoms. Based on this (as yet still unpublished) data, we assumed a symptomatic fraction of only 15% in 
the calculations and forecasts presented here. This assumption should be regarded as speculative, since the 
information specific for the ratio between symptomatic and asymptomatic COVID-19 patients, although avail-
able, is not conclusive at this  point28–30. These values are also consistent with the high number of asymptomatic 
infected subjects estimated for other pandemic events. The percentage of asymptomatic infections during pan-
demic Influenza A/H1N1/2009, based on epidemiology studies founded in serological analysis in a vast range 
of geographical settings, has been estimated between 65 and 85%31; up to 20–40% of the population in urban 
areas (i.e., Monterrey in México, and Pittsburgh in USA)32,33 exhibited specific antibodies against Influenza A/
H1N1/2009 regardless of experiencing symptoms, while the fraction of confirmed symptomatic infections was 
lower than less than 10%.

In addition, the average time of sickness was set at 21 days in our simulations, as this is within the reported 
range of 14–32  days34,35, with a median time to recovery of 21  days36. Studies show that high numbers of viral 
particles (~ 105 viral copies  mL−1) can be found in saliva from COVID-19 patients even at day 20 after the onset 
of  symptoms37. Therefore, we assume that all those infected not quarantined could continue to transmit the virus 
until full recovery (21 days). Similarly, asymptomatic patients are only removed from the pool of susceptible 
persons after full virus clearance. The fraction of deceased patients (m) was calculated as m = 0.023 of those 

(6)�X = µo(1− σ) (X− R) (Po − X)/Po�t,

(7)�R =

{

α
t=t−delay_q

∫
t=0

dX/dt+ (1− α)
t=t−delay_r

∫
t=0

dX/dt

}

�t.

Table 1.  Epidemiological data and parameter values used in the model.

Parameter Definition (units) Value or [range] Reference/source

µo

Intrinsic rate of infectivity of COVID-19  (day−1)
Calculated from confirmed COVID-19 cases during the first stage of 
the pandemic at Madrid, Spain (Ministy of Health, Spain): (https ://
www.mscbs .gob.es)

0.36–0.65 Calculated from officially reported data: number of symptomatic 
COVID-19 positive cases

Po

Total population of the city (hab)
Provided by model user from actual census data; (i.e.; www.citym ayors 
.com)

[0, 0–15, 500, 800] From census information

delay_q Average number of days between infection and positive diagnostics and 
quarantine (days) 2–5 Assumed based on COVID-19 typical  cronology35

delay_r Average number of days between infection and effective recovery or 
dead (days) 14 34,36,37

a Fraction of asymptomatic subjects among infected. Inferred from 
serological study conducted in NYC: (www.cnn.com) 0.85 27

(1 − a) Fraction of symptomatic subjects among infected 0.15

m
Mortality rate expressed as a fraction of symptomatic individuals
Continuously updated by Johns Hopkins University (Coronavirus 
Research Center). https ://coron aviru s.jhu.edu/

0.069 42,43

σ Social distancing (dimensionless)
Parameter provided by model user to simulate a scenario [0–1] User defined

(1 − σ) Fractional reduction in activity in the city due to social distancing [0–1] Calculated from σ

https://www.mscbs.gob.es
https://www.mscbs.gob.es
http://www.citymayors.com
http://www.citymayors.com
http://www.cnn.com
https://coronavirus.jhu.edu/
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infected 14 days before. This mortality percentage (case fatality rate) lies within the range reported in recent 
literature for COVID-1914,38–40. The time lapse of 14 days between the onset of disease and death was statistically 
estimated by Linton et al. in a recent  report41.

The straightforward implementation of the model in Excel (Supplemental File S1), using the set of parameters 
described before, allows the calculation of all populations (X, A, S, and D) every hour. Note that this model ena-
bles the description of the progressive exhaustion of the epidemic, as expected by the progressive depletion of 
the susceptible population. Next, we discuss criteria for selection of the values of µo based on the initial behavior 
of the COVID-19 pandemic at different urban areas around the globe.

Estimation of specific epidemic rate values
We further propose that µo may be calculated from actual epidemiological data corresponding to the first expo-
nential stage of COVID-19 local epidemics. We determined the appropriate ranges of values for µo by analyzing 
publicly available data from different websites that continuously monitor the progression of confirmed cases of 
COVID-19 for different nations (Table 2).

Figure 2A shows the progression on the number of COVID-19 positive cases in different regions, namely 
Spain (mainly Madrid), Iran (mainly Tehran), Italy, and New York City (NYC). We have selected these data sets 
to illustrate that the evolution of the epidemic has a local flavor that mainly depends on the number of initial 
infected persons, the demographic density, and the set of containment measures taken by government officials 
and society. Figure 2B shows the natural log of the cumulative number of infections over time for the same set of 
countries. This simple plotting strategy is highly useful for analyzing the local rate of progression of the pandemic.

In an initial stage, the local epidemic progression is consistent with a simple first order exponential model 
d(X)/dt = µ [X], where [X] is the number of initially infected subjects. Then the integral form of this equation 
renders the linear equation: ln X/Xo = µ × t. During the exponential phase, a straight line should be observed, and 
the slope of that line denotes the specific rate (µo) of the epidemic spreading. Note that COVID-19 has exhibited 
a wide range of spreading rates in different countries (from ~ 0.12 to ~ 0.65 day−1). Note also that µ is related to 
the doubling time  (td), often reported in population and epidemiological studies, by the equation  td = Ln 2/µ. 
Therefore, ranges of doubling times between 1.07 and 5.77 days are observed just among these three regional 
cases.  Td, which can also be defined as a function of time  td(t), gives a reliable measure of the efficiency of the 
containment  policy44,45.

Different exponential stages, perfectly distinguishable by their exhibition of different slopes (Table 3), may 
be observed within the same time series. For instance, the outbreak in NYC (Fig. 2B; blue symbols) was first 
described by an extremely high slope (µo = 0.654 day−1). However, after a series of measures adopted in NYC by 
the federal, state, and local governments, the specific growth rate of the epidemics fell to µ = 0.119 day−1.

The last point is extremely important, since two drastically different slopes can be observed before and after 
a package of adequate measures within the same territory. In addition, two localities that experienced similar 
initial specific epidemic rates may exhibit dramatically different evolutions as a function of the initial response 
of government and society (Fig. 2C,D). For instance, while the COVID-19 epidemics in Italy and South Korea 
exhibited similar µo values (0.328 and 0.268, respectively), the Italian outbreak decreased the growth rate to 0.189 
after emergency measures, while South Korea set an example by effectively and rapidly lowering the specific 
epidemic rate to nearly 0 in just 2 weeks.

Table 2.  Websites displaying COVID-19 data in practically real time.

Our World in data:

https ://ourwo rldin data.org/coron aviru s;

Worldometer

https ://www.world omete rs.info/coron aviru s/about /#sourc es

El País

https ://elpai s.com/socie dad/2020/03/16/actua lidad /15843 60628 _53848 6.html

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

https ://gisan ddata .maps.arcgi s.com/apps/opsda shboa rd/index .html#/bda75 94740 fd402 99423 467b4 8e9ec f6

Wikipedia, The Free Encyclopedia

https ://en.wikip edia.org/wiki/2020_coron aviru s_pande mic_in_Iran

https ://en.wikip edia.org/wiki/COVID -19_pande mic_in_South _Korea 

Fast-trackcities.org

https ://www.fast-track citie s.org/conte nt/data-visua lizat ion-mexic o-city-covid 

New York City Government. Health. COVID-19 Data. 2020

https ://www1.nyc.gov/site/doh/covid /covid -19-data.page

CONACyT. COVID-19 México. Tablero México. (2020)

https ://coron aviru s.gob.mx/datos /

https://ourworldindata.org/coronavirus
https://www.worldometers.info/coronavirus/about/#sources
https://elpais.com/sociedad/2020/03/16/actualidad/1584360628_538486.html
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Iran
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_South_Korea
https://www.fast-trackcities.org/content/data-visualization-mexico-city-covid
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://coronavirus.gob.mx/datos/
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Figure 2.  Epidemiological data related to the onset of a COVID-19 pandemic in different regions. (A) 
Cumulative number of positive cases of COVID-19 infection in Spain (yellow circles), Iran (green squares), and 
NYC (blue triangles) during the first days after the outbreak. (B) Natural logarithm of the cumulative number 
of positive cases of COVID-19 infection in Spain (yellow circles), Iran (green squares), and NYC (blue triangles 
and squares). (C) Cumulative number of positive cases of COVID-19 infection in Italy (blue squares) and South 
Korea (red circles). (D) Natural logarithm of the cumulative number of positive cases of COVID-19 infection 
in Italy (blue squares and diamonds) and South Korea (red circles and triangles). Two clearly distinctive 
exponential stages are observed in the case of the NYC and South Korean progression.

Table 3.  Specific infection rates (µo) and associated doubling times  (td) for COVID-19 infection in different 
geographic regions.

Territory Temporality µ (day−1)
td 
(day)

Spain (Madrid) Initial 0.440 1.575

Italy Initial 0.328 2.113

Italy After stringent measures 0.189 3.667

Iran Initial 0.491 1.412

Iran (Tehran) Initial 0.509 1.361

Germany Initial 0.280 2.475

NYC Initial 0.655 1.058

NYC After measures 0.120 5.776

South Korea Initial 0.268 2.586

South Korea After stringent measures; massive testing 0.016 43.322

France Initial 0.379 1.828

France After measures 0.161 4.311

Mexico Initial 0.330 2.100
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Validation and predictions: effect of social distancing and testing
Overall, the model is capable of closely reproducing the progression of reported cases for urban areas. We found 
that, adapting the model to a particular locality is straightforward and only requires (a) the declaration of the 
population of the urban area, and (b) the selection of a  td value (time to doubling the name of infections) or µo 
(initial infective rate); (ln 2 = µo  td). Note that our model is formulated in terms of values of the specific epidemic 
growth rate (µo for the onset of the epidemic and µ for later times). However, expressing the specific epidemic 
rate in terms of doubling time  (td = Ln 2/µ) may be more practical and simpler to communicate and understand 
(Table 3). The selection of µo  (td) can be easily done by fitting the prediction to the initial set of reported cases of 
infection. In our experience, four to five reliable data points are needed for a good fit.

We have run different scenarios to validate the predictive capabilities of our epidemic model for COVID-19. 
First, we illustrate the use of the model by recreating the pandemic progression in NYC, one of the most densely 
urban areas worldwide. Figure 3 shows the predicted trend of the pandemic in NYC during the initial stage of the 
pandemic wave from March to May, 2020. We set  (Po = 8,350,000) and selected a value of µo = 0.655  (td = 1.058) 
for the first week of this simulation. By the second week of March, stringent measures of social distancing were 
imposed in  NYC46. Social distancing has been regarded as the one of the most effective buffering measures for 
local COVID-19  epidemics8,47,48. The evaluation of social distancing was straightforward. In the demographic 
model, we have defined σ as a dimensionless social distancing parameter, while 1 − σ is the remaining fraction 
of activity in a society after the application of social distancing measures that reduce the level of activity in an 
σ fraction. Accordingly, in the Excel implementation of the model, we can multiply the value of µ (the specific 
infection rate) by a factor of (1 − σ) to obtain a proper fit for the new trend on actual cases and to calculate the 
impact of distancing measures that would diminish social contact. For example, a constant value of σ = 0.25 
means that social activities will be decreased by 25%. Similarly, we multiplied µ by (1 − σ) = 0.50 to simulate the 
effect of a scenario of social distancing that would diminish close social interaction by 50% (see Supplementary 
Fig. S1). In practice, social distancing must be a function of time. Indeed, measures aimed to enforce social 
distancing are normally applied progressively. In the Excel implementation of the demographic model, we have 
reserved a column to provide values for σ. In this way, the user can define σ as a constant or as a function of 
time, namely σ(f). We evaluated the effect of different degrees of social distancing on the shape of the epidemic 
curve for NYC to identify plausible ranges of σ to use in the NYC simulations (Supplementary Fig. S1)46. Social 
distancing has a clear buffering effect on the epidemics, delaying the occurrence of the peak of infections and 
distributing the number of cases across a longer time span. This is remarkably important as it provides time for 
proper attention to patients with severe  symptomatology9. The effect of anticipating measures of social distancing 
has a moderate effect on retarding the infection curve but not on decreasing the cumulative number of infections 
(Supplementary Fig. S1). This moderate gain of time provides additional leeway for planning interventions or 
allocating resources, with time being gold during pandemic events. For instance, our results suggest that, for an 
urban area such as NYC, imposing measures that guarantee a social distance (α = 0.5) equivalent to a decrease 
in demographic density of 50% will delay the peak of maximum number of infections by 15 days (from day 23 
to day 38) and will decrease its intensity from ~ 175,500 to ~ 80,600 new cases of infection per day. In turn, this 
implies a lower demand for hospital beds per day during the epidemics and may mark the difference between a 
manageable crisis and a public health  catastrophe9, 47.

We conducted a series of simulations by varying the values of α = 0.5 to fit the actual data of cumulative 
number of reported cases of COVID-19 and the number of new cases per day. The results of our simulations 
suggest that strict measures of social distancing had to be rapidly implemented in NYC during the first weeks of 
the pandemic episode and that the measures of social distancing imposed in NYC were equivalent to a decrease 
in the effective demographic density of more than 70% (σ > 0.70) in a few days. The comparison between the 
actual and the predicted scenarios in terms of new cases is presented in Fig. 3A. In these simulations, we set a 
linear ramp of values of effective social distancing from σ = 0.0 to 0.75 in twelve days, which is consistent with 
reports on the decrease in mobility in NYC between March 10 and March 23,  202046.

The analysis presented in Fig. 3A for NYC only considers the effect of social distancing. This simple embodi-
ment of the model may enable an accurate forecast of pandemic scenarios in territories (or time periods) in which 
massive testing campaigns were not enforced (e.g., Mexico City; a case that we will analyze later). However, the 
long-term analysis of the progression of COVID-19 in NYC required the consideration of testing campaigns. Our 
demographic model allows a definition of the fraction of infected subjects (σ), and the span of days between infec-
tion and effective quarantine, given a positive diagnostic (delay_q). We explored different values of α for a fixed 
assumed value of delay_q (i.e., delay_q = 4 days) and found a set (progression) of α that reasonably reproduces 
the progression of the first wave of COVID-19 in NYC during the first wave of the pandemic episode. Figure 3B 
shows the number of cumulative cases predicted and reported in NYC (from March to May 2020) and the profile 
of values of social distancing (σ) and testing intensity (α) used to generate the predicted profiles. Our simula-
tion results (Fig. 3B,C) suggest that an intensive testing campaign had to be enforced to contain the pandemic 
wave, and we were able to reproduce the actual progression of pandemic COVID-19 in NYC by setting a linear 
ramp of α values form 0 to 0.76 in just two weeks, from March 20 to April 7, 2020. This is somewhat consistent 
with the information now available on the number of PCR tests conducted in the USA during March and April 
2020. In general, the USA is one of the leading countries in terms of the number of PCR tests performed during 
the first semester of 2020, and NYC was the first epicenter of COVID-19 in  America49,50. PCR-based testing in 
the USA started in mid-March (i.e., mainly NYC) and increased rapidly to more than 100,000 PCR tests daily. 
The relevance of wide-scale testing to control the progression of COVID-19 in urban areas has been discussed 
widely in literature. In agreement, the results of our simulations suggest that massive testing, combined with a 
social distancing (σ ~ 0.75), were key to facing the COVID crisis in NYC. Figure 3D shows the predictions of the 
number of daily cases of COVID-19 in NYC in different scenarios (i.e., with no intervention, with only social 
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distancing [σ ~ 0.75; α = 0.10], and with social distancing and aggressive testing as actually implemented). Note 
that in the context of our work, no intervention implies that persons diagnosed as positive for COVID-19 are still 
quarantined (α = 0.10). Our simulations predict that the total number of cases positive for COVID-19 would have 
exceeded 1.3 million in the absence of social distancing measures during the first 100 days of the epidemic. The 
implementation of social distancing alone would have resulted in nearly 800,000 positive cases within the same 
timeframe. The combination of social distancing and aggressive testing decreased this sum to nearly 200,000 and 
avoided a human catastrophe in one of the most densely populated cities in the world.

We also explored the adequacy of our demographic model for describing the dynamics of the first pandemic 
wave in South Korea. South Korea based its strategy of COVID-19 control on widespread testing, efficient 

Figure 3.  Progression of the COVID-19 Pandemic in NYC. (A) Initial evolution of the number of positive 
cases of COVID-19 in NYC. Actual data points, as officially reported, are shown using black circles. Simulation 
predictions are described by the yellow line. The profile of social distancing values used in simulations (σ) is 
shown as a green line. Relative change in visits to different type of places in NYC (modified from Ref.46) as 
reported by Bakker et al. (modified from Ref.46): food (green circles), shopping (red circules), and city/outdoors 
(blue circles) (B) Model prediction of the total number of symptomatic patients through the months of March 
and May. Actual data points, as officially reported, are shown using black circles. Simulation predictions are 
described by the yellow line. The profiles of social distancing (σ) and testing effort (α) are shown as green and 
blue lines, respectively. The value of (X–R), determinant of the progression of the infection among population, 
is shown as a red line. (C) Model prediction (yellow) and actual number of new cases of COVID-19 per day (as 
reported by the NYC authorities; blue bars; https ://www1.nyc.gov/site/doh/covid /covid -19-data.page) during 
the period from March 1 to June 30, 2020. (D) Prediction of the number of new cases of COVID-19 per day if 
no containment actions were adopted (red area), if only social distancing were adopted (in accordance with the 
green profile of σ values in A and B) (green area), or in the actual case were social distancing combined with 
intensified testing and quarantine were adopted (yellow area). The inset show the cumulative number of cases 
predicted by the model for the same scenarios previously described. Actual data points corresponding to the 
officially reported number of cumulative COVID-19 cases in NYC are shown as black dots.

https://www1.nyc.gov/site/doh/covid/covid-19-data.page
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contact tracing, and self-quarantine programs for suspected positive  individuals51. South Korea implemented an 
open public testing program early in February and made it available even to asymptomatic  people49,50. Testing 
quickly ramped up to more than 10,000 tests per day, mainly in the city of Daegu (with a metropolitan area of 
nearly 2.5 million people). Modeling the pandemic evolution in South Korea was more challenging than that in 
NYC. However, we were able to closely reproduce the dynamics of the first wave of pandemic COVID by setting 
an aggressive slope of social distancing (i.e., self-quarantine, use of masks, avoidance of public gatherings) as 
well as an aggressive testing campaign (α ~ 0.98). This means that, to properly fit the actual data on cumulative 
cases and new infections per day (Fig. 4A,B), we had to assume that the testing effort in South Korea resulted 
in finding and effectively quarantining nearly 100% of all infected persons within a few days (i.e., within 2 days 
in our simulations). Our model suggests that the early adoption of wide spread testing and contact tracing to 
quickly finding infected individuals, in combination with social distancing, is much more effective than only 
social distancing or massive testing alone (Fig. 4C).

Prediction in real time: pandemic progression in Mexico City
We also have followed the onset and progression of the COVID-19 pandemic in México City, the most industri-
alized and most populated city in México. We set (µo = 0.33;  td = 2.1) based on proper fitting to the first set of the 
official values of COVID-19 infection announced for México City by the local authorities from March 6 to March 
18, 2020 (https ://www.fast-track citie s.org/conte nt/data-visua lizat ion-mexic o-city-covid ). Since then, the simula-
tion results have closely predicted the actual values for more than 300 days, as officially reported from March 
19 to December 20 (Fig. 5A,B). The COVID-19 evolution in Mexico City exhibits remarkable differences with 
respect to those observed in other countries. For instance, the first pandemic wave has not yet ended (Fig. 5A,B) 
at the time of this writing. An epidemic peak was observed in May 2020. After the peak, the number of new 
cases per day remained nearly constant for months. The number of daily cases has increased from October to 
December 2020 and has now reached alarming values at the end of 2020 (i.e., more than 5000 cases per day). The 
Mexican strategy to face COVID-19 has been guided by the enforcement of social distancing since the onset of 
the epidemics (i.e., March 10, 2020). A system of four colors (i.e., red, orange, yellow, and green) was established 
by the government officials to allow continuous communication of the status of the pandemic in the different 
regions across Mexico. In this scale of colors, red conveys the maximum level of alert. Colors are also associated 
with the economic and recreational activities that are allowed and the level of social distancing enforced. Mexico 
City went from red to orange in June 2020 and back to red in December 2020. Then, the level of enforced social 
distancing could be considered as high (arguably above 50%) during the pandemic progression. However, wide 
scale testing has not been considered as part of the official strategy to face COVID-19, and diagnostics have only 
been done upon request and mainly for symptomatic individuals. Indeed, Mexico has been regarded as one of 
the countries that have conducted a low number of tests. At the time of this writing, Mexico has conducted 23 
tests per 1000 inhabitants. By contrast, as of December 2020, the USA and South Korea had conducted 688 and 

Figure 4.  Progression of the COVID-19 Pandemic in South Korea. (A) Model prediction of the total number 
of symptomatic patients through the months of February and May. Actual data points, as officially reported, 
are shown using black circles. Simulation predictions are described by the yellow line. The profiles of social 
distancing (σ) and testing effort (α) are shown as green and blue lines, respectively. The value of (X–R), 
determinant of the progression of the infection among population, is shown as a red line. (B) Model prediction 
(yellow) and actual number of new cases of COVID-19 per day (blue bars; https ://en.wikip edia.org/wiki/
COVID -19_pande mic_in_South _Korea ) during the period from February to May, 2020. (C) Prediction of 
the number of new cases of COVID-19 per day if no containment actions were adopted (red area); if only 
intensified testing and quarantine were adopted [in accordance with the blue profile of α values in (A)] (blue 
area); if only social distancing were adopted [in accordance with the green profile of σ values in (A)] (purple 
area); or in the actual case were social distancing combined with intensified testing and quarantine were adopted 
(yellow area).

https://www.fast-trackcities.org/content/data-visualization-mexico-city-covid
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_South_Korea
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_South_Korea
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71.65 tests per 1000 inhabitants (https ://ourwo rldin data.org/coron aviru s)50. In December, México, the USA, and 
South Korea, were performing 0.10, 3.96, and 0.839 tests per 1000 inhabitants daily,  respectively49,50. Consist-
ent with these data, our demographic model nearly reproduced the entire progression of pandemic COVID-19 
in Mexico City by considering a basal level of testing (α = 0.10) and a set of values for social distancing larger 
than 60% (σ > 0.60). Figure 5A shows the agreement between the actual and simulated cumulative numbers of 
COVID-19 cases and the profile of values for social distancing used to produce a good fit. Figure 5B shows a 
comparison between the actual and predicted numbers of daily new cases of COVID-19 in Mexico City. Our 
analysis suggests that the sudden increase in the slope of the number of daily new cases that has been observed 
by the end of 2020 was originated by a progressive relaxation of the social distancing (i.e., a linear change in the 
α values form 0.75 to 0.68 during 150 days).

Our simulations also suggest that the effect of testing intensification could have been key to extinguishing 
the pandemic wave in the case of Mexico City. Figure 5C shows the predicted effect of doubling (α = 0.20; yellow 
shaded area) and tripling (α = 0.30; green shaded area) the testing intensity. Based on this demographic model, the 
cumulative number of COVID-19 cases in Mexico´s capital could have been reduced from ~ 270,000 to ~ 75,300 
(a reduction of 72%) by intensifying the testing effort twofold (i.e., ~ 50 tests per 1000 inhabitants).

Concluding remarks
Scenarios such as those unfolded in Iran, Italy, NYC, Mexico City, England or Spain emphasize the importance 
of forecasting for planning ahead during epidemic events.

Figure 5.  Progression of the COVID-19 Pandemic in Mexico City. (A) Model prediction of the total number 
of symptomatic patients through the months of Mach and December, 2020. Actual data points, as officially 
reported, are shown using black circles. Simulation predictions are described by the yellow line. The profile of 
social distancing (σ) is shown as a green line. A constant value of α = 0.10 was used in this simulation. (B) Model 
prediction (yellow line) and actual number of new cases of COVID-19 per day (as reported by the Mexican 
authorities; blue line; https ://www.fast-track citie s.org/conte nt/data-visua lizat ion-mexic o-city-covid ) during 
the period from February to December, 2020. (C) Prediction of the number of new cases of COVID-19 per day 
if the testing effort would have been doubled (light yellow area) or tripled (green area). The simulation of the 
actual pandemic scenario is also shown (yellow-orange area).

https://ourworldindata.org/coronavirus
https://www.fast-trackcities.org/content/data-visualization-mexico-city-covid
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This contribution shows the prediction potential of an extremely simple simulation tool that can be used by 
practically any citizen with basic training in Excel. We used a set of differential equations, recent epidemiological 
data regarding the evolution of COVID-19 infection, and basic information on the characteristics of COVID-19 
infection (i.e., time from infection to recovery, case mortality rate) to accurately recreate or predict the progres-
sion of the COVID-19 in three urban areas with different demographic characteristics (i.e., NYC in USA, Daegu 
in South Korea, and Mexico City in México). We showed that the model can be adapted to closely follow the 
evolution of COVID-19 in densely populated urban areas by simply adjusting parameters related to demographic 
characteristics (i.e., total population) and aggressiveness of the response from a society/government to epidemics 
(i.e., social distancing and testing intensity).

One important attribute of this model is that it is amenable to implementation in Excel. This greatly facilitates 
its widespread use. We anticipate that policy- and decision-makers, scientists, graduate students, and regular 
citizens (with only a basic training in Excel) will be able to use this model. In addition to being user friendly, the 
model is also very flexible and enables the simulation of a wide variety of scenarios (i.e., COVID progression 
under different degrees of social distancing and testing effort) and enables rational planning (i.e., prediction of 
hospital bed occupancy, design of testing campaigns, and reinforcement/redirection of social distancing strate-
gies). Simple modifications will enable the use of this model for the evaluation of the effect of different vaccina-
tion strategies. Finally, the model can be easily adapted to epidemic events related to any other viral or bacterial 
pathogen by inputting the corresponding epidemiological parameters.
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